The exact MSSM spectrum from string theory

Volker Braun, ${ }^{a b}$ Yang-Hui He, ${ }^{c d}$ Burt A. Ovrut ${ }^{a}$ and Tony Pantev ${ }^{b}$
${ }^{a}$ Department of Physics, University of Pennsylvania Philadelphia, PA 19104-6395, U.S.A.
${ }^{b}$ Department of Mathematics, University of Pennsylvania Philadelphia, PA 19104-6395, U.S.A.
${ }^{c}$ Merton College, Oxford University
Oxford OX1 4JD, U.K.
${ }^{d}$ Mathematical Institute
Oxford, 24-29 St. Giles', OX1 3LB, U.K.
E-mail: vbraun, ovrut@physics.upenn.edu, yang-hui.he@merton.ox.ac.uk,
tpantev@math.upenn.edu

Abstract: We show the existence of realistic vacua in string theory whose observable sector has exactly the matter content of the MSSM. This is achieved by compactifying the $E_{8} \times E_{8}$ heterotic superstring on a smooth Calabi-Yau threefold with an $S U(4)$ gauge instanton and a $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ Wilson line. Specifically, the observable sector is $N=1$ supersymmetric with gauge group $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \times U(1)_{B-L}$, three families of quarks and leptons, each family with a right-handed neutrino, and one Higgs-Higgs conjugate pair. Importantly, there are no extra vector-like pairs and no exotic matter in the zero mode spectrum. There are, in addition, 6 geometric moduli and 13 gauge instanton moduli in the observable sector. The holomorphic $S U(4)$ vector bundle of the observable sector is slope-stable.

Keywords: Superstring Vacua, Superstrings and Heterotic String.

Contents

1. Observable sector 2
2. Hidden sector 3

In a number of conference talks [1], we introduced a minimal heterotic standard model whose observable sector has exactly the matter spectrum of the MSSM. This was motivated and constructed as follows.

The gauge group $\operatorname{Spin}(10)$ is very compeling from the point of view of grand unification and string theory since a complete family of quarks and leptons plus a right-handed neutrino fits exactly into its $\mathbf{1 6}$ spin representation. Non-vanishing neutrino masses indicate that, in supersymmetric theories without exotic multiplets, a right-handed neutrino must be added to each family of quarks and leptons [2]. Within the context [3] of $N=1$ supersymmetric $E_{8} \times E_{8}$ heterotic string vacua, a $\operatorname{Spin}(10)$ group can arise from the spontaneous breaking of the observable sector E_{8} group by an $S U(4)$ gauge instanton on an internal Calabi-Yau threefold [4]. The $\operatorname{Spin}(10)$ group is then broken by discrete Wilson lines to a gauge group containing $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$ as a factor 爮. To achieve this, the Calabi-Yau manifold must have, minimally, a fundamental group $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$.

Until recently, such vacua could not be constructed since Calabi-Yau threefolds with fundamental group $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ and a method for building appropriate $S U(4)$ gauge instantons on them were not known. The problem of finding elliptic Calabi-Yau threefolds with $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ fundamental group was rectified in [6]. That of constructing $S U(4)$ instantons was solved in a series of papers [7], where a class of $S U(4)$ gauge instantons on these Calabi-Yau manifolds was presented. Generalizing the results in [8, 回], these instantons were obtained as connections on rank 4 holomorphic vector bundles. In order for such connections to exist, it is necessary for the corresponding bundles to be slope-stable. A number of non-trivial checks of the stability of these bundles was presented in [7]. A rigorous proof of the conjectured slope-stability recently appeared in 10. The complete low energy spectra were computed in this context. The observable sectors were found to be almost that of the minimal supersymmetric standard model (MSSM). Specifically, the matter content of the most economical of these vacua consisted of three families of quarks/leptons, each family with a right-handed neutrino, and two Higgs-Higgs conjugate pairs. Apart from these, there were no other vector-like pairs, and no exotic particles. That is, the observable sector is almost that of the MSSM, but contains an extra pair of Higgs-Higgs conjugate fields. Additionally, there are 6 geometric moduli [6] and 19 vector bundle moduli 11]. In [12, it was shown that non-vanishing μ-terms can arise from cubic moduli-Higgs-Higgs conjugate interactions. Despite the extra Higgs-Higgs conjugate fields, the vacua presented in [7] are so close to realistic particle physics that we refer to them as "heterotic standard models".

These results were very encouraging. However, an obvious question is whether one can, by refining these vector bundles, obtain compactifications of the $E_{8} \times E_{8}$ heterotic string whose matter content in the observable sector is exactly that of the MSSM. The answer to this question is affirmative. In this paper, we present models with an $N=1$ supersymmetric observable sector which has the following properties.

1. Observable sector

- $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \times U(1)_{B-L}$ gauge group
- Matter spectrum:
- 3 families of quarks and leptons, each with a right-handed neutrino
- 1 Higgs-Higgs conjugate pair
- No exotic matter fields
- No vector-like pairs (apart from the one Higgs pair)
- 3 complex structure, 3 Kähler, and 13 vector bundle moduli

The holomorphic $S U(4)$ vector bundle V leading to this observable sector is slope-stable. A rigorous proof of this is presented in [13]. Note that, although very similar to the supersymmetric standard model, our observable sector differs in two significant ways. These are, first, the appearance of an additional gauged $B-L$ symmetry and, second, the existence of $6+13$ moduli fields, all uncharged under the gauge group.

The structure of the hidden sector depends on the choice of a slope-stable, holomorphic vector bundle V^{\prime}. The topology of V^{\prime}, that is, its second Chern class, is constrained by the anomaly cancellation equation

$$
\begin{equation*}
c_{2}\left(V^{\prime}\right)=c_{2}(T X)-c_{2}(V)-[\mathcal{W}]+[\overline{\mathcal{W}}], \tag{1.1}
\end{equation*}
$$

where $[\mathcal{W}]$ and $[\overline{\mathcal{W}}]$ are possible effective classes associated with five-branes and anti-fivebranes, respectively, in the bulk space.

There are two approaches to solving this condition that are of interest. The first is to choose V^{\prime} to be the trivial bundle, which is trivially slope-stable. In this case the anomaly cancellation condition eq. (1.1) becomes

$$
\begin{equation*}
[\mathcal{W}]-[\overline{\mathcal{W}}]=c_{2}(T X)-c_{2}(V), \tag{1.2}
\end{equation*}
$$

which requires both a five-brane and an anti-five-brane in the bulk space. The trivial bundle on the hidden orbifold plane and the holomorphic five-brane preserve $N=1$ supersymmetry, while the anti-five-brane breaks supersymmetry. This hidden sector has the following properties:

2. Hidden sector

- Orbifold Plane:
- Unbroken E_{8} gauge group
- No matter fields
- No vector bundle moduli
- Bulk Space:
- Five-brane translation modulus
- Anti-five-brane translation modulus

This solution for the hidden sector is simpler mathematically and physically more relevant. As shown in [14], the contribution of the anti-five-brane to the scalar potential leads to a long-lived meta-stable vacuum which breaks supersymmetry and can have a small, positive cosmological constant. This appears to be difficult, if not impossible, to achieve in a hidden sector without anti-branes. For this reason, we favor this hidden sector. This vacuum is the heterotic analog of the KKLT vacua [16] in the Type II context.

Nevertheless, one might be interested in a supersymmetric hidden sector. In this case, one would follow a second approach to canceling the anomaly, namely, constructing a nontrivial hidden sector bundle V^{\prime} satisfying the anomaly cancellation condition eq. (1.1) with $[\overline{\mathcal{W}}]=0$. A necessary condition for the slope-stability of V^{\prime} is that

$$
\begin{equation*}
\int_{X} \omega \wedge c_{2}\left(V^{\prime}\right)>0 \tag{2.1}
\end{equation*}
$$

for some Kähler class ω. Often, this inequality is the only obstruction to finding stable bundles. For the specific Calabi-Yau threefold and $S U(4)$ observable sector bundle discussed above, one expects there to exist holomorphic vector bundles V^{\prime} on the hidden sector which satisfy the anomaly cancellation condition with $[\overline{\mathcal{W}}]=0$ and are slope-stable for Kähler classes ω for which the observable bundle V is also stable. We have not explicitly constructed such hidden sector bundles.

The vacua presented above are a small subset of the heterotic standard model vacua presented in [7]. As discussed below, their construction involves subtleties in the analysis of the so-called "ideal sheaf" in the observable sector vector bundle, which were previously overlooked. They appear to be the minimal such vacua, all others containing either additional pairs of Higgs-Higgs conjugate fields and/or vector-like pairs of families in the observable sector. For this reason, we will refer to these vacua as "minimal" heterotic standard models.

We note that, to our knowledge, these are the only vacua ${ }^{1}$ whose spectrum in the observable sector has exactly the matter content of the MSSM. Other superstring construc-

[^0]tions [9, 18-21] lead to vacua whose zero mode spectrum contains either exotic multiplets or substantial numbers of vector-like pairs of Higgs and family fields, or both. Although these might obtain an intermediate scale mass (up to a few orders of magnitude smaller than the compactification scale) through cubic couplings with moduli (assuming these interactions satisfy appropriate selection rules and the expectation values of the moduli are sufficiently large), they can never be entirely removed from the spectrum within the context of the 4 -d effective action. To do so would violate the decoupling theorem. For these reasons, we speculate that heterotic standard models and, in particular, the minimal heterotic standard model described in this paper may be of phenomenological significance.

We now specify, in more detail, the properties of the these minimal vacua and indicate how they are determined. The requisite Calabi-Yau threefold, X, is constructed as follows [18]. Let \widetilde{X} be a simply connected Calabi-Yau threefold which is an elliptic fibration over a rational elliptic surface, $d P_{9}$. It was shown in [6] that \widetilde{X} factors into the fiber product $\widetilde{X}=B_{1} \times_{\mathbb{P}^{1}} B_{2}$, where B_{1} and B_{2} are both $d P_{9}$ surfaces. Furthermore, \widetilde{X} is elliptically fibered with respect to each projection map $\pi_{i}: \widetilde{X} \rightarrow B_{i}, i=1,2$. In a restricted region of their moduli space, such manifolds can be shown to admit a $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ group action which is fixed-point free. It follows that

$$
\begin{equation*}
X=\frac{\tilde{X}}{\mathbb{Z}_{3} \times \mathbb{Z}_{3}} \tag{2.2}
\end{equation*}
$$

is a smooth Calabi-Yau threefold that is torus-fibered over a singular $d \mathbb{P}_{9}$ and has nontrivial fundamental group

$$
\begin{equation*}
\pi_{1}(X)=\mathbb{Z}_{3} \times \mathbb{Z}_{3}, \tag{2.3}
\end{equation*}
$$

as desired. It was shown in [6] that X has

$$
\begin{equation*}
h^{1,1}(X)=3, \quad h^{2,1}(X)=3 \tag{2.4}
\end{equation*}
$$

Kähler and complex structure moduli respectively; that is, a total of 6 geometric moduli.
We now construct a holomorphic vector bundle, V, on X with structure group

$$
\begin{equation*}
G=S U(4) \tag{2.5}
\end{equation*}
$$

contained in the E_{8} of the observable sector. For this bundle to admit a gauge connection satisfying the hermitian Yang-Mills equations, it must be slope-stable. The connection spontaneously breaks the observable sector E_{8} gauge symmetry to

$$
\begin{equation*}
E_{8} \longrightarrow \operatorname{Spin}(10), \tag{2.6}
\end{equation*}
$$

as desired. We produce V by building stable, holomorphic vector bundles \widetilde{V} with structure group $S U(4)$ over \widetilde{X} that are equivariant under the action of $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$. This is accomplished by generalizing the method of "bundle extensions" introduced in 8 . The bundle V is then given as

$$
\begin{equation*}
V=\frac{\widetilde{V}}{\mathbb{Z}_{3} \times \mathbb{Z}_{3}} \tag{2.7}
\end{equation*}
$$

Realistic particle physics phenomenology imposes additional constraints on \widetilde{V}. Recall that with respect to $S U(4) \times \operatorname{Spin}(10)$ the adjoint representation of E_{8} decomposes as

$$
\begin{equation*}
248=(\mathbf{1}, 45) \oplus(4,16) \oplus(\overline{4}, \overline{\mathbf{1 6}}) \oplus(6,10) \oplus(15,1) \tag{2.8}
\end{equation*}
$$

The number of $\mathbf{4 5}$ multiplets is given by

$$
\begin{equation*}
h^{0}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right)=1 \tag{2.9}
\end{equation*}
$$

Hence, there are $\operatorname{Spin}(10)$ gauge fields in the low energy theory, but no adjoint Higgs multiplets. The chiral families of quarks/leptons will descend from the excess of $\mathbf{1 6}$ over $\overline{\mathbf{1 6}}$ representations. To ensure that there are three generations of quarks and leptons after quotienting out $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$, one must require that

$$
\begin{equation*}
n_{\overline{16}}-n_{\mathbf{1 6}}=\frac{1}{2} c_{3}(\widetilde{V})=-3 \cdot\left|\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right|=-27, \tag{2.10}
\end{equation*}
$$

where $n_{\overline{16}}, n_{\mathbf{1 6}}$ are the numbers of $\overline{\mathbf{1 6}}$ and $\mathbf{1 6}$ multiplets, respectively, and $c_{3}(\widetilde{V})$ is the third Chern class of \widetilde{V}.

The number of $\overline{\mathbf{1 6}}$ zero modes [9] is given by $h^{1}\left(\widetilde{X}, \widetilde{V}^{*}\right)$. Therefore, if we demand that there be no vector-like matter fields arising from $\overline{\mathbf{1 6}} \mathbf{- 1 6}$ pairs, \widetilde{V} must be constrained so that

$$
\begin{equation*}
h^{1}\left(\widetilde{X}, \widetilde{V}^{*}\right)=0 \tag{2.11}
\end{equation*}
$$

Similarly, the number of $\mathbf{1 0}$ zero modes is $h^{1}\left(\widetilde{X}, \wedge^{2} \widetilde{V}\right)$. However, since the Higgs fields arise from the decomposition of the 10, one must not set the associated cohomology to zero. Rather, we restrict \widetilde{V} so that $h^{1}\left(\widetilde{X}, \wedge^{2} \widetilde{V}\right)$ is minimal, but non-vanishing. Subject to all the constraints that \widetilde{V} must satisfy, we find that the minimal number of $\mathbf{1 0}$ representations is

$$
\begin{equation*}
h^{1}\left(\widetilde{X}, \wedge^{2} \widetilde{V}\right)=4 \tag{2.12}
\end{equation*}
$$

In [7], the smallest dimension of this cohomology group that we could find in the heterotic standard model context was $h^{1}\left(\widetilde{X}, \wedge^{2} \widetilde{V}\right)=14$. However, as discussed below, a more detailed analysis of the ideal sheaf involved in the construction of the vector bundle allows one to reduce this from 14 to 4 .

We now present a stable vector bundle \widetilde{V} satisfying constraints eqns. (2.10), (2.11) and (2.12). This is constructed as an extension

$$
\begin{equation*}
0 \longrightarrow V_{1} \longrightarrow \tilde{V} \longrightarrow V_{2} \longrightarrow 0 \tag{2.13}
\end{equation*}
$$

of two rank 2 bundles, V_{1} and V_{2}. Each of these is the tensor product of a line bundle with a rank 2 bundle pulled back from a $d P_{9}$ factor of \tilde{X}. Using the two projection maps, we define ${ }^{2}$

$$
\begin{equation*}
V_{1}=\mathcal{O}_{\tilde{X}}\left(-\tau_{1}+\tau_{2}\right) \otimes \pi_{1}{ }^{*}\left(W_{1}\right), \quad V_{2}=\mathcal{O}_{\tilde{X}}\left(\tau_{1}-\tau_{2}\right) \otimes \pi_{2}{ }^{*}\left(W_{2}\right), \tag{2.14}
\end{equation*}
$$

[^1]where
\[

$$
\begin{equation*}
\operatorname{span}\left\{\tau_{1}, \tau_{2}, \phi\right\}=H^{2}(\widetilde{X}, \mathbb{C})^{\mathbb{Z}_{3} \times \mathbb{Z}_{3}} \tag{2.15}
\end{equation*}
$$

\]

is the $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ invariant part of the Kähler moduli space. The two bundles, W_{1} on B_{1} and W_{2} on B_{2}, are constructed via an equivariant version of the Serre construction as

$$
\begin{equation*}
0 \longrightarrow \chi_{1} \mathcal{O}_{B_{1}}\left(-f_{1}\right) \longrightarrow W_{1} \longrightarrow \chi_{1}^{2} \mathcal{O}_{B_{1}}\left(f_{1}\right) \otimes I_{3}^{B_{1}} \longrightarrow 0 \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \longrightarrow \chi_{2}^{2} \mathcal{O}_{B_{2}}\left(-f_{2}\right) \longrightarrow W_{2} \longrightarrow \chi_{2} \mathcal{O}_{B_{2}}\left(f_{2}\right) \otimes I_{6}^{B_{2}} \longrightarrow 0 \tag{2.17}
\end{equation*}
$$

where $I_{3}^{B_{1}}$ and $I_{6}^{B_{2}}$ denote the ideal sheaf ${ }^{3}$ of 3 and 6 points in B_{1} and B_{2} respectively. Characters χ_{1} and χ_{2} are third roots of unity which generate the first and second factors of $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$.

The crucial new observation occurs in the definitions of W_{1} and W_{2}. Satisfying condition eq. (2.10) requires that one use ideal sheaves of 9 points in total. In our previous papers [7], we chose W_{1} to be the trivial bundle and defined W_{2} as an extension of two rank 1 bundles, one of which contained a single ideal sheaf, I_{9}. This comprises 9 points, as it must. However, it is possible to use several such sheaves in the definitions of W_{1} and W_{2}, as long as the total number of points is 9 . Note that while the $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ action on \widetilde{X} only has orbits consisting of 9 points, the $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ action on the base surfaces B_{1} and B_{2} is not free and, in fact, has orbits of 9 and of 3 points. This allows one to define the ideal sheaf $I_{3}^{B_{1}}$ using the fixed points of the second \mathbb{Z}_{3} on B_{1} and the ideal sheaf $I_{6}^{B_{2}}$ using the fixed points of the second \mathbb{Z}_{3} on B_{2} taken with multiplicity 2 . That is, previously we only considered the case where the total of 9 points were distributed $\operatorname{as}^{4} 0+9$. In this paper, we distribute the points into two different ideal sheaves as $3+6$. This allows us to obtain the precise MSSM matter content.

We now extend the observable sector bundle V by adding a Wilson line, W, with holonomy

$$
\begin{equation*}
\operatorname{Hol}(W)=\mathbb{Z}_{3} \times \mathbb{Z}_{3} \subset \operatorname{Spin}(10) \tag{2.18}
\end{equation*}
$$

The associated gauge connection spontaneously breaks $\operatorname{Spin}(10)$ as

$$
\begin{equation*}
\operatorname{Spin}(10) \longrightarrow S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \times U(1)_{B-L}, \tag{2.19}
\end{equation*}
$$

where $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$ is the standard model gauge group. Since $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ is Abelian and $\operatorname{rank}(\operatorname{Spin}(10))=5$, an additional rank one factor must appear. For the chosen embedding of $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$, this is precisely the gauged $B-L$ symmetry.

As discussed in [9], the zero mode spectrum of $V \oplus W$ on X is determined as follows. Let R be a representation of $\operatorname{Spin}(10)$, and denote the associated \widetilde{V} bundle by $U_{R}(\widetilde{V})$. Find the representation of $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ on $H^{1}\left(\widetilde{X}, U_{R}(\widetilde{V})\right)$ and tensor this with the representation of the Wilson line on R. The zero mode spectrum is then the invariant subspace under this joint group action. Let us apply this to the case at hand. To begin with, the single 45

[^2]decomposes into the $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \times U(1)_{B-L}$ gauge fields. Now consider the $\overline{\mathbf{1 6}}$ representation. It follows from eq. (2.11) that no such representations occur. Hence, no $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \times U(1)_{B-L}$ fields arising from vector-like $\overline{\mathbf{1 6}} \mathbf{- 1 6}$ pairs appear in the spectrum, as desired. Next examine the 16 representation. The constraints (2.10) and (2.11) imply that
\[

$$
\begin{equation*}
h^{1}(\widetilde{X}, \widetilde{V})=27 \tag{2.20}
\end{equation*}
$$

\]

One can calculate the $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ representation on $H^{1}(\widetilde{X}, \widetilde{V})$, as well as the Wilson line action on 16. We find that

$$
\begin{equation*}
H^{1}(\widetilde{X}, \widetilde{V})=R G^{\oplus 3} \tag{2.21}
\end{equation*}
$$

where $R G$ is the regular representation of $G=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ given by

$$
\begin{equation*}
R G=1 \oplus \chi_{1} \oplus \chi_{2} \oplus \chi_{1}^{2} \oplus \chi_{2}^{2} \oplus \chi_{1} \chi_{2} \oplus \chi_{1}^{2} \chi_{2} \oplus \chi_{1} \chi_{2}^{2} \oplus \chi_{1}^{2} \chi_{2}^{2} \tag{2.22}
\end{equation*}
$$

Furthermore, the Wilson line action can be chosen so that

$$
\begin{align*}
& \mathbf{1 6}=\left[\chi_{1} \chi_{2}^{2}(\mathbf{3}, \mathbf{2}, 1,1) \oplus \chi_{2}^{2}(\mathbf{1}, \mathbf{1}, 6,3) \oplus \chi_{1}^{2} \chi_{2}^{2}(\overline{\mathbf{3}}, \mathbf{1},-4,-1)\right] \oplus \\
& \oplus\left[(\mathbf{1}, \mathbf{2},-3,-3) \oplus \chi_{1}^{2}(\overline{\mathbf{3}}, \mathbf{1}, 2,-1)\right] \oplus \chi_{2}(\mathbf{1}, \mathbf{1}, 0,3) \tag{2.23}
\end{align*}
$$

Tensoring these together, we find that the invariant subspace consists of three families of quarks and leptons, each family transforming as

$$
\begin{equation*}
(\mathbf{3}, \mathbf{2}, 1,1), \quad(\overline{\mathbf{3}}, \mathbf{1},-4,-1), \quad(\overline{\mathbf{3}}, \mathbf{1}, 2,-1) \tag{2.24}
\end{equation*}
$$

and

$$
\begin{equation*}
(\mathbf{1}, \mathbf{2},-3,-3), \quad(\mathbf{1}, \mathbf{1}, 6,3), \quad(\mathbf{1}, \mathbf{1}, 0,3) \tag{2.25}
\end{equation*}
$$

under $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \times U(1)_{B-L}$. We have displayed the quantum numbers $3 Y$ and $3(B-L)$ for convenience. Note from eq. (2.25) that each family contains a right-handed neutrino, as desired.

Next, consider the 10 representation. Recall from eq. (2.12) that $h^{1}\left(\widetilde{X}, \wedge^{2} \widetilde{V}\right)=4$. We find that the representation of $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ in $H^{1}\left(\widetilde{X}, \wedge^{2} \widetilde{V}\right)$ is given by

$$
\begin{equation*}
H^{1}\left(\widetilde{X}, \wedge^{2} \widetilde{V}\right)=\chi_{2} \oplus \chi_{2}^{2} \oplus \chi_{1} \chi_{2}^{2} \oplus \chi_{1}^{2} \chi_{2} \tag{2.26}
\end{equation*}
$$

Furthermore, the Wilson line W action is

$$
\begin{equation*}
\mathbf{1 0}=\left[\chi_{2}^{2}(\mathbf{1}, \mathbf{2}, 3,0) \oplus \chi_{1}^{2} \chi_{2}^{2}(\mathbf{3}, \mathbf{1},-2,-2)\right] \oplus\left[\chi_{2}(\mathbf{1}, \overline{\mathbf{2}},-3,0) \oplus \chi_{1} \chi_{2}(\overline{\mathbf{3}}, \mathbf{1}, 2,2)\right] . \tag{2.27}
\end{equation*}
$$

Tensoring these actions together, one finds that the invariant subspace consists of a single copy of

$$
\begin{equation*}
(\mathbf{1}, \mathbf{2}, 3,0), \quad(\mathbf{1}, \overline{\mathbf{2}},-3,0) \tag{2.28}
\end{equation*}
$$

That is, there is precisely one pair of Higgs-Higgs conjugate fields occurring as zero modes of our vacuum.

Finally, consider the 1 representation of the $\operatorname{Spin}(10)$ gauge group. It follows from (2.8), the above discussion, and the fact that the Wilson line action on $\mathbf{1}$ is trivial that the number of $\mathbf{1}$ zero modes is given by the $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ invariant subspace of $H^{1}\left(\widetilde{X}, \widetilde{V} \otimes \widetilde{V}^{*}\right)$, which is denoted by $H^{1}\left(\widetilde{X}, \widetilde{V} \otimes \widetilde{V}^{*}\right)^{\mathbb{Z}_{3} \times \mathbb{Z}_{3}}$. Using the formalism developed in 11], we find that

$$
\begin{equation*}
h^{1}\left(\widetilde{X}, \widetilde{V} \otimes \widetilde{V}^{*}\right)^{\mathbb{Z}_{3} \times \mathbb{Z}_{3}}=13 \tag{2.29}
\end{equation*}
$$

That is, there are 13 vector bundle moduli.
Putting these results together, we conclude that the zero mode spectrum of the observable sector has gauge group $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \times U(1)_{B-L}$, contains three families of quarks and leptons each with a right-handed neutrino, has one Higgs-Higgs conjugate pair, and contains no exotic fields or additional vector-like pairs of multiplets of any kind. Additionally, there are 13 vector bundle moduli.

As a final step, one must demonstrate that \widetilde{V} is slope-stable. This has been proven, in detail, and is presented in (13]. Here, suffice it to say that \widetilde{V} will be stable with respect to any Kähler class in a finite three-dimensional region of Kähler moduli space containing the point

$$
\begin{equation*}
\omega=3\left(2 \tau_{1}+3 \tau_{2}+\phi\right) \tag{2.30}
\end{equation*}
$$

Henceforth, we restrict our discussion to this region of moduli space, which we denote by \mathcal{K}^{s}.

Another important constraint for realistic compactifications is the existence of Yukawa couplings. Recall that (via the Kaluza-Klein reduction) the massless fields are associated with a number of vector-bundle valued harmonic one-forms Ψ_{i} on the Calabi-Yau threefold. Their Yukawa coupling is then given by the integral

$$
\begin{equation*}
\lambda_{i j k}=\frac{1}{9} \int_{\widetilde{X}} \Omega \wedge \operatorname{Tr}\left(\Psi_{i} \wedge \Psi_{j} \wedge \Psi_{k}\right) \tag{2.31}
\end{equation*}
$$

where the Tr denotes a suitable contraction of the vector bundle indices. The integral is only non-zero if the legs of the three one-forms Ψ_{i} span the π_{1}-fiber direction, the π_{2} fiber direction, and the base \mathbb{P}^{1} direction. This is the case here. A detailed analysis reveals that we do, indeed, have non-vanishing Yukawa couplings 22.

Thus far, we have discussed the vector bundle of the observable sector. However, the vacuum can contain a stable, holomorphic vector bundle, \widetilde{V}^{\prime}, on X whose structure group is in the E_{8}^{\prime} of the hidden sector. As discussed earlier, the requirement of anomaly cancellation relates the observable and hidden sector bundles, imposing the constraint that

$$
\begin{equation*}
c_{2}\left(\tilde{V}^{\prime}\right)=c_{2}(T \tilde{X})-c_{2}(\widetilde{V})-[\mathcal{W}]+[\overline{\mathcal{W}}] \tag{2.32}
\end{equation*}
$$

where $[\mathcal{W}]$ and $[\overline{\mathcal{W}}]$ must be effective classes and c_{2} is the second Chern class. In the strongly coupled heterotic string, $[\mathcal{W}]$ and $[\overline{\mathcal{W}}]$ are the curve classes around which a bulk space fivebrane and anti-five-brane respectively are wrapped. We have previously constructed \widetilde{X} and \widetilde{V} and, hence, can compute $c_{2}(T \widetilde{X})$ and $c_{2}(\widetilde{V})$. They are found to be

$$
\begin{equation*}
c_{2}(T \widetilde{X})=12\left(\tau_{1}^{2}+\tau_{2}^{2}\right), \quad c_{2}(\widetilde{V})=\tau_{1}^{2}+4 \tau_{2}^{2}+4 \tau_{1} \tau_{2} \tag{2.33}
\end{equation*}
$$

Inserting these results, eq. (2.32) becomes a constraint on $\widetilde{V}^{\prime},[\mathcal{W}]$, and $[\overline{\mathcal{W}}]$. To obtain a consistent theory the hidden sector bundle \widetilde{V}^{\prime} must satisfy (2.32). The easiest possibility mathematically, and also the most relevant physically, is to choose \widetilde{V}^{\prime} to be the trivial bundle, that is,

$$
\begin{equation*}
\widetilde{V}^{\prime}=\mathcal{O}_{\tilde{X}} \tag{2.34}
\end{equation*}
$$

In this case the anomaly cancellation condition becomes

$$
\begin{equation*}
[\mathcal{W}]-[\overline{\mathcal{W}}]=\left(3 \tau_{1}^{2}\right)+4\left(\tau_{1}^{2}+\tau_{2}^{2}\right)-4\left(\tau_{1} \tau_{2}-\tau_{1}^{2}-\tau_{2}^{2}\right) . \tag{2.35}
\end{equation*}
$$

The curves in brackets are Poincaré dual to effective curves on \widetilde{X}. Since they appear with positive and negative coefficients, the overall curve is not effective and we require a non-vanishing anti-five-brane class. It is simplest to set

$$
\begin{equation*}
[\mathcal{W}]\left(3 \tau_{1}^{2}\right)+4\left(\tau_{1}^{2}+\tau_{2}^{2}\right), \quad[\overline{\mathcal{W}}]=4\left(\tau_{1} \tau_{2}-\tau_{1}^{2}-\tau_{2}^{2}\right) \tag{2.36}
\end{equation*}
$$

Hence, in addition to the hidden sector unbroken E_{8} gauge group there is both a five-brane and an anti-five-brane in the bulk. Furthermore, as discussed in (14], one can stabilize all moduli in this context with a small, positive cosmological constant. Therefore, one obtains a meta-stable non-supersymmetric string theory vacuum.

As mentioned earlier, it is of mathematical interest to see whether the anomaly cancellation condition, eq. (2.32), can be solved using an $S U(n)$ hidden sector gauge instanton and no anti-five-branes in the bulk space. For this one has to find a different slope-stable hidden sector bundle \widetilde{V}^{\prime}, which is not necessarily non-trivial. As a guide to constructing stable, holomorphic vector bundles \widetilde{V}^{\prime} in the hidden sector, we note the following condition. It can be shown that if \widetilde{V}^{\prime} is slope-stable with respect to a Kähler class ω, it must satisfy the "Bogomolov inequality"

$$
\begin{equation*}
\int_{\tilde{X}} \omega \wedge c_{2}\left(\widetilde{V}^{\prime}\right)>0 \tag{2.37}
\end{equation*}
$$

Note that if $c_{2}\left(\widetilde{V}^{\prime}\right)$ is Poincare dual to an effective (anti-effective) curve, then (2.37) is satisfied (never satisfied) for any choice of Kähler class. Most vector bundles \widetilde{V}^{\prime} have a second Chern class whose Poincare dual is neither effective nor anti-effective. In this case, constraint (2.37) is satisfied for ω 's contained in a non-vanishing subspace of the Kähler cone. One can explicitly analyze this subspace using the second Chern class derived from anomaly condition (2.32). It is simplest to limit our discussion to \widetilde{V}^{\prime} for which $[\mathcal{W}]=0$. The generalization to the case where $[\mathcal{W}]$ is non-vanishing is straightforward. In this case, eqns. (2.32) and (2.33) imply that

$$
\begin{equation*}
c_{2}\left(\widetilde{V}^{\prime}\right)=11 \tau_{1}^{2}+8 \tau_{2}^{2}-4 \tau_{1} \tau_{2} \tag{2.38}
\end{equation*}
$$

Recalling from (2.15) that τ_{1}, τ_{2} and ϕ are a basis for the $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ invariant Kähler moduli space, we can parameterize an arbitrary such Kähler class by

$$
\begin{equation*}
\omega=x_{1} \tau_{1}+x_{2} \tau_{2}+y \phi . \tag{2.39}
\end{equation*}
$$

Then, using the relations $\tau_{1}^{3}=\tau_{2}^{3}=\phi^{2}=0, \tau_{1} \phi=3 \tau_{1}^{2}$ and $\tau_{2} \phi=3 \tau_{2}^{2}$ we see using (2.38) and (2.39) that

$$
\begin{equation*}
\omega \wedge c_{2}\left(\widetilde{V}^{\prime}\right)=4 x_{1}+7 x_{2}-12 y . \tag{2.40}
\end{equation*}
$$

It follows that constraint (2.37) will be satisfied if

$$
\begin{equation*}
4 x_{1}+7 x_{2}-12 y>0 . \tag{2.41}
\end{equation*}
$$

This defines a three-dimensional region of moduli space which we denote by \mathcal{K}^{B}. Note that the Kähler class (2.30) for which the observable sector bundle \widetilde{V} was proven to be stable also satisfies (2.41). Hence,

$$
\begin{equation*}
\mathcal{K}^{s} \cap \mathcal{K}^{B} \neq \emptyset . \tag{2.42}
\end{equation*}
$$

In fact, one can show that $\mathcal{K}^{s} \cap \mathcal{K}^{B}$ is a finite three-dimensional subcone of the Kähler cone. It follows that both \widetilde{V} and \widetilde{V}^{\prime} can, in principle, be slope-stable with respect to any Kähler class $\omega \in \mathcal{K}^{s} \cap \mathcal{K}^{B}$.

Fix $\omega \in \mathcal{K}^{s} \cap \mathcal{K}^{B}$. There are numerous vector bundles \widetilde{V}^{\prime} with second Chern class (2.38) which satisfy condition (2.37) for this choice of ω. Since (2.37) is only a necessary condition for stability, we expect that many such \widetilde{V}^{\prime} are not stable. Indeed, one can construct explicit examples for which this is the case. However, (2.37) is a very strong condition and it is believed that at least some \tilde{V}^{\prime} are slope-stable with respect to ω. Furthermore, since one may choose any ω in the three-dimensional space $\mathcal{K}^{s} \cap \mathcal{K}^{B}$, it becomes even more probable that there exist slope-stable vector bundles \widetilde{V}^{\prime} with respect to at least one such ω.

We conclude that one expects that there should exist non-trivial hidden sector holomorphic vector bundles \widetilde{V}^{\prime} that satisfy the anomaly cancellation condition with $[\overline{\mathcal{W}}]=0$ and are slope-stable. However, we re-iterate that in such vacua one expects unbroken supersymmetry and a large negative cosmological constant after stabilizing the moduli. Explicit examples of such bundles will be presented elsewhere.

Acknowledgments

We are grateful to E. Buchbinder, R. Donagi, P. Langacker, B. Nelson and D. Waldram for enlightening discussions. This research was supported in part by cooperative research agreement DE-FG02-95ER40893 with the U.S. Department of Energy and an NSF Focused Research Grant DMS0139799 for "The Geometry of Superstrings". Tony Pantev is partially supported by NSF grants DMS 0104354 and DMS 0403884. Yang Hui-He is supported in part by the FitzJames Fellowship at Merton College, Oxford.

References

[1] B.A. Ovrut, A heterotic standard model, Proceedings of the Workshop on Cosmological Frontiers in Fundamental Physics, Perimeter Institute, October 24-28 2005; A heterotic standard model, Proceedings of the Workshop on Strings and the Real World, Ohio State University, November 7-9 2005;
V. Braun, A heterotic standard model, Workshop on Heterotic Strings, Derived Categories, and Stacks, Oberwolfach Reports, November 13-19 2005.
[2] P. Langacker, Neutrino physics (theory), Int. J. Mod. Phys. A 20 (2005) 5254 hep-ph/0411116.
[3] D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, The heterotic string, Phys. Rev. Lett. 54 (1985) 502.
[4] E. Witten, New issues in manifolds of $\mathrm{SU}(3)$ holonomy, Nucl. Phys. B 268 (1986) 79.
[5] A. Sen, The heterotic string in arbitrary background field, Phys. Rev. D 32 (1985) 2102; E. Witten, Symmetry breaking patterns in superstring models, Nucl. Phys. B 258 (1985) 75; J.D. Breit, B.A. Ovrut and G.C. Segre, E_{6} symmetry breaking in the superstring theory, Phys. Lett. B 158 (1985) 33.
[6] V. Braun, B.A. Ovrut, T. Pantev and R. Reinbacher, Elliptic Calabi-Yau threefolds with $Z_{3} \times Z_{3}$ Wilson lines, JHEP 12 (2004) 062 hep-th/0410055.
[7] V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A heterotic standard model, Phys. Lett. B 618 (2005) 252 hep-th/0501070; A standard model from the $E_{8} \times E_{8}$ heterotic superstring, JHEP 06 (2005) 039 hep-th/0502155; Vector bundle extensions, sheaf cohomology and the heterotic standard model, hep-th/0505041.
[8] R.P. Thomas, Examples of bundles on Calabi-Yau 3-folds for string theory compactifications, Adv. Theor. Math. Phys. 4 (2000) 231 math.ag/9912179;
R. Donagi, B.A. Ovrut, T. Pantev and D. Waldram, Spectral involutions on rational elliptic surfaces, Adv. Theor. Math. Phys. 5 (2002) 499 math.ag/0008011; Standard-model bundles, Adv. Theor. Math. Phys. 5 (2002) 563 math.ag/0008010;
Standard-model bundles on non-simply connected Calabi-Yau threefolds, JHEP 08 (2001) 053 hep-th/0008008]; Standard models from heterotic M-theory, Adv. Theor. Math. Phys. 5 (2002) 93 hep-th/9912208;
R. Donagi, B.A. Ovrut, T. Pantev and R. Reinbacher, SU(4) instantons on Calabi-Yau threefolds with $Z_{2} \times Z_{2}$ fundamental group, JHEP 01 (2004) 022 hep-th/0307273;
B.A. Ovrut, T. Pantev and R. Reinbacher, Invariant homology on standard model manifolds, JHEP 01 (2004) 059 hep-th/0303020;
Torus-fibered Calabi-Yau threefolds with non-trivial fundamental group, JHEP 05 (2003) 040 hep-th/0212221.
[9] R. Donagi, B. A. Ovrut, T. Pantev and D. Waldram, Spectral involutions on rational elliptic surfaces, Adv. Theor. Math. Phys. 5 (2001) 499 math. AG/0008011;
R. Donagi, Y.H. He, B.A. Ovrut and R. Reinbacher, Higgs doublets, split multiplets and heterotic $\mathrm{SU}(3)_{c} \times \mathrm{SU}(2)_{l} \times U(1)_{y}$ spectra, Phys. Lett. B 618 (2005) 259 hep-th/0409291; The spectra of heterotic standard model vacua, JHEP 06 (2005) 070 hep-th/0411156.
[10] T.L. Gomez, S. Lukic and I. Sols, Constraining the Kähler moduli in the heterotic standard model, hep-th/0512205.
[11] V. Braun, Y.H. He, B.A. Ovrut and T. Pantev, Heterotic standard model moduli, JHEP 01 (2006) 025 hep-th/0509051.
[12] V. Braun, Y.H. He, B.A. Ovrut and T. Pantev, Moduli dependent μ-terms in a heterotic standard model, JHEP 03 (2006) 006 hep-th/0510142.
[13] V. Braun, Y.H. He and B.A. Ovrut, Stability of the minimal heterotic standard model bundle, hep-th/0602073.
[14] V. Braun and B.A. Ovrut, Stabilizing moduli with a positive cosmological constant in heterotic M-theory, hep-th/0603088.
[15] E.I. Buchbinder and B.A. Ovrut, Vacuum stability in heterotic M-theory, Phys. Rev. D 69 (2004) 086010 hep-th/0310112.
[16] S. Kachru, R. Kallosh, A. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 hep-th/0301240;
E.I. Buchbinder, Raising anti de Sitter vacua to de Sitter vacua in heterotic M-theory, Phys. Rev. D 70 (2004) 066008 hep-th/0406101.
[17] V. Bouchard and R. Donagi, An SU(5) heterotic standard model, Phys. Lett. B 633 (2006) 783 hep-th/0512149.
[18] P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nucl. Phys. B 258 (1985) 46 .
[19] B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A superstring inspired standard model, Phys. Lett. B 180 (1986) 69; A three generation superstring model, 1. Compactification and discrete symmetries, Nucl. Phys. B 278 (1986) 667; A three generation superstring model, 2. Symmetry breaking and the low-energy theory, Nucl. Phys. B 292 (1987) 602.
[20] W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, The supersymmetric standard model from the heterotic string, Phys. Rev. Lett. 96 (2006) 121602 hep-ph/0511035; J.A. Casas and C. Muñoz, Three generation $\mathrm{SU}(3) \times \mathrm{SU}(2) \times U(1)_{y}$ models from orbifolds, Phys. Lett. B 214 (1988) 63;
A. Font, L.E. Ibáñez, H.P. Nilles and F. Quevedo, Yukawa couplings in degenerate orbifolds: towards a realistic $\mathrm{SU}(3) \times \mathrm{SU}(2) \times U(1)$ superstring, Phys. Lett. B 210 (1988) 101; L. E. Ibáñez, J. E. Kim, H. P. Nilles and F. Quevedo, Orbifolds compactifications with three families of $S U(3) \times S U(2) \times U(1)^{n}$, Phys. Lett. B 191 (1987) 3;
J. Giedt, Completion of standard model-like embeddings, Ann. Phys. (NY) 289 (2001) 251 hep-th/0009104.
[21] L.E. Ibáñez, F. Marchesano and R. Rabadán, Getting just the standard model at intersecting branes, JHEP 11 (2001) 002 hep-th/0105155;
R. Blumenhagen, V. Braun, B. Körs and D. Lüst, Orientifolds of K3 and Calabi- Yau manifolds with intersecting D-branes, JHEP 07 (2002) 026 hep-th/0206038;
R. Blumenhagen, B. Körs, D. Lüst and T. Ott, The standard model from stable intersecting brane world orbifolds, Nucl. Phys. B 616 (2001) 3 hep-th/0107138;
M. Cvetič, G. Shiu and A.M. Uranga, Three-family supersymmetric standard like models from intersecting brane worlds, Phys. Rev. Lett. 87 (2001) 201801 hep-th/0107143;
M. Cvetič, T. Li and T. Liu, Standard-like models as type-IIB flux vacua, Phys. Rev. D 71 (2005) 106008 hep-th/0501041;
T.P.T. Dijkstra, L.R. Huiszoon and A.N. Schellekens, Supersymmetric standard model spectra from rCFT orientifolds, Nucl. Phys. B 710 (2005) 3 hep-th/0411129;
F. Marchesano and G. Shiu, Building MSSM flux vacua, JHEP 11 (2004) 041
hep-th/0409132.
[22] V. Braun, Y.H. He and B.A. Ovrut, Yukawa couplings in heterotic standard models, hep-th/0601204.
[23] A. Lukas, B.A. Ovrut and D. Waldram, Five-branes and supersymmetry breaking in M-theory, JHEP 04 (1999) 009 hep-th/9901017; Heterotic M-theory vacua with five-branes, Fortschr. Phys. 48 (2000) 167 hep-th/9903144.
[24] B.A. Ovrut, T. Pantev and J. Park, Small instanton transitions in heterotic M-theory, JHEP 05 (2000) 045 hep-th/0001133;
E. Buchbinder, R. Donagi and B.A. Ovrut, Vector bundle moduli and small instanton transitions, JHEP 06 (2002) 054 hep-th/0202084;
Y.H. He, B.A. Ovrut and R. Reinbacher, The moduli of reducible vector bundles, JHEP 03 (2004) 043 hep-th/0306121.

[^0]: ${ }^{1}$ At least until recently 17, when a nice generalization of the construction presented in 19) (which makes stability manifest) appeared. Their model differs from ours in two respects. First, it uses a rank 5 vector bundle instead of a rank 4 one. Second, their one pair of Higgs fields arises in a codimension-two region in the moduli space, whereas our Higgs fields are generically present.

[^1]: ${ }^{2}$ See [f] for our notation of line bundles $\mathcal{O}_{\tilde{X}}(\cdots)$, etc.

[^2]: ${ }^{3}$ The analytic functions vanishing at the respective points.
 ${ }^{4}$ The ideal sheaf of 0 points is just the trivial line bundle.

