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Abstract: We show the existence of realistic vacua in string theory whose observable

sector has exactly the matter content of the MSSM. This is achieved by compactifying

the E8 ×E8 heterotic superstring on a smooth Calabi-Yau threefold with an SU(4) gauge

instanton and a Z3×Z3 Wilson line. Specifically, the observable sector is N = 1 supersym-

metric with gauge group SU(3)C × SU(2)L × U(1)Y × U(1)B−L, three families of quarks

and leptons, each family with a right-handed neutrino, and one Higgs–Higgs conjugate

pair. Importantly, there are no extra vector-like pairs and no exotic matter in the zero

mode spectrum. There are, in addition, 6 geometric moduli and 13 gauge instanton moduli

in the observable sector. The holomorphic SU(4) vector bundle of the observable sector is

slope-stable.
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In a number of conference talks [1], we introduced a minimal heterotic standard model

whose observable sector has exactly the matter spectrum of the MSSM. This was motivated

and constructed as follows.

The gauge group Spin(10) is very compelling from the point of view of grand unification

and string theory since a complete family of quarks and leptons plus a right-handed neutrino

fits exactly into its 16 spin representation. Non-vanishing neutrino masses indicate that, in

supersymmetric theories without exotic multiplets, a right-handed neutrino must be added

to each family of quarks and leptons [2]. Within the context [3] of N = 1 supersymmetric

E8 ×E8 heterotic string vacua, a Spin(10) group can arise from the spontaneous breaking

of the observable sector E8 group by an SU(4) gauge instanton on an internal Calabi-Yau

threefold [4]. The Spin(10) group is then broken by discrete Wilson lines to a gauge group

containing SU(3)C × SU(2)L × U(1)Y as a factor [5]. To achieve this, the Calabi-Yau

manifold must have, minimally, a fundamental group Z3 × Z3.

Until recently, such vacua could not be constructed since Calabi-Yau threefolds with

fundamental group Z3 × Z3 and a method for building appropriate SU(4) gauge instantons

on them were not known. The problem of finding elliptic Calabi-Yau threefolds with

Z3 × Z3 fundamental group was rectified in [6]. That of constructing SU(4) instantons

was solved in a series of papers [7], where a class of SU(4) gauge instantons on these

Calabi-Yau manifolds was presented. Generalizing the results in [8, 9], these instantons

were obtained as connections on rank 4 holomorphic vector bundles. In order for such

connections to exist, it is necessary for the corresponding bundles to be slope-stable. A

number of non-trivial checks of the stability of these bundles was presented in [7]. A

rigorous proof of the conjectured slope-stability recently appeared in [10]. The complete

low energy spectra were computed in this context. The observable sectors were found

to be almost that of the minimal supersymmetric standard model (MSSM). Specifically,

the matter content of the most economical of these vacua consisted of three families of

quarks/leptons, each family with a right-handed neutrino, and two Higgs–Higgs conjugate

pairs. Apart from these, there were no other vector-like pairs, and no exotic particles.

That is, the observable sector is almost that of the MSSM, but contains an extra pair

of Higgs–Higgs conjugate fields. Additionally, there are 6 geometric moduli [6] and 19

vector bundle moduli [11]. In [12], it was shown that non-vanishing µ-terms can arise from

cubic moduli-Higgs–Higgs conjugate interactions. Despite the extra Higgs–Higgs conjugate

fields, the vacua presented in [7] are so close to realistic particle physics that we refer to

them as “heterotic standard models”.

– 1 –



J
H
E
P
0
5
(
2
0
0
6
)
0
4
3

These results were very encouraging. However, an obvious question is whether one

can, by refining these vector bundles, obtain compactifications of the E8 × E8 heterotic

string whose matter content in the observable sector is exactly that of the MSSM. The

answer to this question is affirmative. In this paper, we present models with an N = 1

supersymmetric observable sector which has the following properties.

1. Observable sector

• SU(3)C × SU(2)L × U(1)Y × U(1)B−L gauge group

• Matter spectrum:

– 3 families of quarks and leptons, each with a right-handed neutrino

– 1 Higgs–Higgs conjugate pair

– No exotic matter fields

– No vector-like pairs (apart from the one Higgs pair)

• 3 complex structure, 3 Kähler, and 13 vector bundle moduli

The holomorphic SU(4) vector bundle V leading to this observable sector is slope-stable.

A rigorous proof of this is presented in [13]. Note that, although very similar to the

supersymmetric standard model, our observable sector differs in two significant ways. These

are, first, the appearance of an additional gauged B−L symmetry and, second, the existence

of 6 + 13 moduli fields, all uncharged under the gauge group.

The structure of the hidden sector depends on the choice of a slope-stable, holomorphic

vector bundle V ′. The topology of V ′, that is, its second Chern class, is constrained by the

anomaly cancellation equation

c2

(
V ′

)
= c2

(
TX

)
− c2

(
V

)
− [W] + [W ], (1.1)

where [W] and [W] are possible effective classes associated with five-branes and anti-five-

branes, respectively, in the bulk space.

There are two approaches to solving this condition that are of interest. The first is to

choose V ′ to be the trivial bundle, which is trivially slope-stable. In this case the anomaly

cancellation condition eq. (1.1) becomes

[W] − [W ] = c2

(
TX

)
− c2

(
V

)
, (1.2)

which requires both a five-brane and an anti-five-brane in the bulk space. The trivial

bundle on the hidden orbifold plane and the holomorphic five-brane preserve N = 1 su-

persymmetry, while the anti-five-brane breaks supersymmetry. This hidden sector has the

following properties:
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2. Hidden sector

• Orbifold Plane:

– Unbroken E8 gauge group

– No matter fields

– No vector bundle moduli

• Bulk Space:

– Five-brane translation modulus

– Anti-five-brane translation modulus

This solution for the hidden sector is simpler mathematically and physically more relevant.

As shown in [14], the contribution of the anti-five-brane to the scalar potential leads to a

long-lived meta-stable vacuum which breaks supersymmetry and can have a small, positive

cosmological constant. This appears to be difficult, if not impossible, to achieve in a hidden

sector without anti-branes. For this reason, we favor this hidden sector. This vacuum is

the heterotic analog of the KKLT vacua [16] in the Type II context.

Nevertheless, one might be interested in a supersymmetric hidden sector. In this case,

one would follow a second approach to canceling the anomaly, namely, constructing a non-

trivial hidden sector bundle V ′ satisfying the anomaly cancellation condition eq. (1.1) with

[W ] = 0. A necessary condition for the slope-stability of V ′ is that
∫

X

ω ∧ c2

(
V ′

)
> 0 (2.1)

for some Kähler class ω. Often, this inequality is the only obstruction to finding stable

bundles. For the specific Calabi-Yau threefold and SU(4) observable sector bundle dis-

cussed above, one expects there to exist holomorphic vector bundles V ′ on the hidden

sector which satisfy the anomaly cancellation condition with [W] = 0 and are slope-stable

for Kähler classes ω for which the observable bundle V is also stable. We have not explicitly

constructed such hidden sector bundles.

The vacua presented above are a small subset of the heterotic standard model vacua

presented in [7]. As discussed below, their construction involves subtleties in the analysis

of the so-called “ideal sheaf” in the observable sector vector bundle, which were previ-

ously overlooked. They appear to be the minimal such vacua, all others containing either

additional pairs of Higgs–Higgs conjugate fields and/or vector-like pairs of families in the

observable sector. For this reason, we will refer to these vacua as “minimal” heterotic

standard models.

We note that, to our knowledge, these are the only vacua1 whose spectrum in the ob-

servable sector has exactly the matter content of the MSSM. Other superstring construc-

1At least until recently [17], when a nice generalization of the construction presented in [9] (which makes

stability manifest) appeared. Their model differs from ours in two respects. First, it uses a rank 5 vector

bundle instead of a rank 4 one. Second, their one pair of Higgs fields arises in a codimension-two region in

the moduli space, whereas our Higgs fields are generically present.
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tions [9, 18 – 21] lead to vacua whose zero mode spectrum contains either exotic multiplets

or substantial numbers of vector-like pairs of Higgs and family fields, or both. Although

these might obtain an intermediate scale mass (up to a few orders of magnitude smaller

than the compactification scale) through cubic couplings with moduli (assuming these in-

teractions satisfy appropriate selection rules and the expectation values of the moduli are

sufficiently large), they can never be entirely removed from the spectrum within the context

of the 4-d effective action. To do so would violate the decoupling theorem. For these rea-

sons, we speculate that heterotic standard models and, in particular, the minimal heterotic

standard model described in this paper may be of phenomenological significance.

We now specify, in more detail, the properties of the these minimal vacua and indicate

how they are determined. The requisite Calabi-Yau threefold, X, is constructed as fol-

lows [18]. Let X̃ be a simply connected Calabi-Yau threefold which is an elliptic fibration

over a rational elliptic surface, dP9. It was shown in [6] that X̃ factors into the fiber prod-

uct X̃ = B1 ×P1 B2, where B1 and B2 are both dP9 surfaces. Furthermore, X̃ is elliptically

fibered with respect to each projection map πi : X̃ → Bi, i = 1, 2. In a restricted region of

their moduli space, such manifolds can be shown to admit a Z3 × Z3 group action which

is fixed-point free. It follows that

X =
X̃

Z3 × Z3

(2.2)

is a smooth Calabi-Yau threefold that is torus-fibered over a singular dP9 and has non-

trivial fundamental group

π1(X) = Z3 × Z3 , (2.3)

as desired. It was shown in [6] that X has

h1,1(X) = 3 , h2,1(X) = 3 (2.4)

Kähler and complex structure moduli respectively; that is, a total of 6 geometric moduli.

We now construct a holomorphic vector bundle, V, on X with structure group

G = SU(4) (2.5)

contained in the E8 of the observable sector. For this bundle to admit a gauge connection

satisfying the hermitian Yang-Mills equations, it must be slope-stable. The connection

spontaneously breaks the observable sector E8 gauge symmetry to

E8 −→ Spin(10) , (2.6)

as desired. We produce V by building stable, holomorphic vector bundles Ṽ with structure

group SU(4) over X̃ that are equivariant under the action of Z3 × Z3. This is accomplished

by generalizing the method of “bundle extensions” introduced in [8]. The bundle V is then

given as

V =
Ṽ

Z3 × Z3

. (2.7)
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Realistic particle physics phenomenology imposes additional constraints on Ṽ . Recall

that with respect to SU(4) × Spin(10) the adjoint representation of E8 decomposes as

248 =
(
1,45

)
⊕

(
4,16

)
⊕

(
4,16

)
⊕

(
6,10

)
⊕

(
15,1

)
. (2.8)

The number of 45 multiplets is given by

h0

(
X̃,O eX

)
= 1. (2.9)

Hence, there are Spin(10) gauge fields in the low energy theory, but no adjoint Higgs

multiplets. The chiral families of quarks/leptons will descend from the excess of 16 over

16 representations. To ensure that there are three generations of quarks and leptons after

quotienting out Z3 × Z3, one must require that

n
16

− n16 =
1

2
c3

(
Ṽ

)
= −3 ·

∣∣Z3 × Z3

∣∣ = −27 , (2.10)

where n
16

, n16 are the numbers of 16 and 16 multiplets, respectively, and c3(Ṽ ) is the

third Chern class of Ṽ .

The number of 16 zero modes [9] is given by h1
(
X̃, Ṽ ∗

)
. Therefore, if we demand that

there be no vector-like matter fields arising from 16-16 pairs, Ṽ must be constrained so

that

h1

(
X̃, Ṽ ∗

)
= 0 . (2.11)

Similarly, the number of 10 zero modes is h1
(
X̃,∧2Ṽ

)
. However, since the Higgs fields arise

from the decomposition of the 10, one must not set the associated cohomology to zero.

Rather, we restrict Ṽ so that h1
(
X̃,∧2Ṽ

)
is minimal, but non-vanishing. Subject to all the

constraints that Ṽ must satisfy, we find that the minimal number of 10 representations is

h1

(
X̃,∧2Ṽ

)
= 4 . (2.12)

In [7], the smallest dimension of this cohomology group that we could find in the heterotic

standard model context was h1(X̃,∧2Ṽ ) = 14. However, as discussed below, a more

detailed analysis of the ideal sheaf involved in the construction of the vector bundle allows

one to reduce this from 14 to 4.

We now present a stable vector bundle Ṽ satisfying constraints eqns. (2.10), (2.11)

and (2.12). This is constructed as an extension

0 −→ V1 −→ Ṽ −→ V2 −→ 0 (2.13)

of two rank 2 bundles, V1 and V2. Each of these is the tensor product of a line bundle with

a rank 2 bundle pulled back from a dP9 factor of X̃. Using the two projection maps, we

define2

V1 = O eX
(−τ1 + τ2) ⊗ π1

∗(W1) , V2 = O eX
(τ1 − τ2) ⊗ π2

∗(W2) , (2.14)

2See [7] for our notation of line bundles O eX
(· · · ), etc.
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where

span{τ1, τ2, φ} = H2(X̃, C)Z3×Z3 (2.15)

is the Z3 × Z3 invariant part of the Kähler moduli space. The two bundles, W1 on B1 and

W2 on B2, are constructed via an equivariant version of the Serre construction as

0 −→ χ1OB1
(−f1) −→ W1 −→ χ2

1OB1
(f1) ⊗ IB1

3
−→ 0 (2.16)

and

0 −→ χ2
2OB2

(−f2) −→ W2 −→ χ2OB2
(f2) ⊗ IB2

6
−→ 0 , (2.17)

where IB1

3
and IB2

6
denote the ideal sheaf3 of 3 and 6 points in B1 and B2 respectively.

Characters χ1 and χ2 are third roots of unity which generate the first and second factors

of Z3 × Z3.

The crucial new observation occurs in the definitions of W1 and W2. Satisfying con-

dition eq. (2.10) requires that one use ideal sheaves of 9 points in total. In our previous

papers [7], we chose W1 to be the trivial bundle and defined W2 as an extension of two

rank 1 bundles, one of which contained a single ideal sheaf, I9. This comprises 9 points,

as it must. However, it is possible to use several such sheaves in the definitions of W1 and

W2, as long as the total number of points is 9. Note that while the Z3 × Z3 action on X̃

only has orbits consisting of 9 points, the Z3 × Z3 action on the base surfaces B1 and B2

is not free and, in fact, has orbits of 9 and of 3 points. This allows one to define the ideal

sheaf IB1

3
using the fixed points of the second Z3 on B1 and the ideal sheaf IB2

6
using the

fixed points of the second Z3 on B2 taken with multiplicity 2. That is, previously we only

considered the case where the total of 9 points were distributed as4 0 + 9. In this paper,

we distribute the points into two different ideal sheaves as 3 + 6. This allows us to obtain

the precise MSSM matter content.

We now extend the observable sector bundle V by adding a Wilson line, W , with

holonomy

Hol(W ) = Z3 × Z3 ⊂ Spin(10) . (2.18)

The associated gauge connection spontaneously breaks Spin(10) as

Spin(10) −→ SU(3)C × SU(2)L × U(1)Y × U(1)B−L , (2.19)

where SU(3)C × SU(2)L × U(1)Y is the standard model gauge group. Since Z3 × Z3 is

Abelian and rank
(
Spin(10)

)
= 5, an additional rank one factor must appear. For the

chosen embedding of Z3 × Z3, this is precisely the gauged B − L symmetry.

As discussed in [9], the zero mode spectrum of V ⊕ W on X is determined as follows.

Let R be a representation of Spin(10), and denote the associated Ṽ bundle by UR(Ṽ ). Find

the representation of Z3 × Z3 on H1
(
X̃, UR(Ṽ )

)
and tensor this with the representation of

the Wilson line on R. The zero mode spectrum is then the invariant subspace under this

joint group action. Let us apply this to the case at hand. To begin with, the single 45

3The analytic functions vanishing at the respective points.
4The ideal sheaf of 0 points is just the trivial line bundle.
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decomposes into the SU(3)C ×SU(2)L ×U(1)Y ×U(1)B−L gauge fields. Now consider the

16 representation. It follows from eq. (2.11) that no such representations occur. Hence, no

SU(3)C × SU(2)L × U(1)Y × U(1)B−L fields arising from vector-like 16-16 pairs appear

in the spectrum, as desired. Next examine the 16 representation. The constraints (2.10)

and (2.11) imply that

h1

(
X̃, Ṽ

)
= 27 . (2.20)

One can calculate the Z3 × Z3 representation on H1
(
X̃, Ṽ

)
, as well as the Wilson line

action on 16. We find that

H1
(
X̃, Ṽ

)
= RG⊕3, (2.21)

where RG is the regular representation of G = Z3 × Z3 given by

RG = 1 ⊕ χ1 ⊕ χ2 ⊕ χ2
1 ⊕ χ2

2 ⊕ χ1χ2 ⊕ χ2
1χ2 ⊕ χ1χ

2
2 ⊕ χ2

1χ
2
2. (2.22)

Furthermore, the Wilson line action can be chosen so that

16 =
[
χ1χ

2
2

(
3,2, 1, 1

)
⊕ χ2

2

(
1,1, 6, 3

)
⊕ χ2

1χ
2
2

(
3,1,−4,−1

)]
⊕

⊕
[(

1,2,−3,−3
)
⊕ χ2

1

(
3,1, 2,−1

)]
⊕ χ2

(
1,1, 0, 3

)
. (2.23)

Tensoring these together, we find that the invariant subspace consists of three families of

quarks and leptons, each family transforming as

(
3,2, 1, 1

)
,

(
3,1,−4,−1

)
,

(
3,1, 2,−1

)
(2.24)

and (
1,2,−3,−3

)
,

(
1,1, 6, 3

)
,

(
1,1, 0, 3

)
(2.25)

under SU(3)C ×SU(2)L ×U(1)Y ×U(1)B−L. We have displayed the quantum numbers 3Y

and 3(B−L) for convenience. Note from eq. (2.25) that each family contains a right-handed

neutrino, as desired.

Next, consider the 10 representation. Recall from eq. (2.12) that h1
(
X̃,∧2Ṽ

)
= 4. We

find that the representation of Z3 × Z3 in H1
(
X̃,∧2Ṽ

)
is given by

H1
(
X̃,∧2Ṽ

)
= χ2 ⊕ χ2

2 ⊕ χ1χ
2
2 ⊕ χ2

1χ2 . (2.26)

Furthermore, the Wilson line W action is

10 =
[
χ2

2

(
1,2, 3, 0

)
⊕ χ2

1χ
2
2

(
3,1,−2,−2

)]
⊕

[
χ2

(
1,2,−3, 0

)
⊕ χ1χ2

(
3,1, 2, 2

)]
. (2.27)

Tensoring these actions together, one finds that the invariant subspace consists of a single

copy of (
1,2, 3, 0

)
,

(
1,2,−3, 0

)
. (2.28)

That is, there is precisely one pair of Higgs–Higgs conjugate fields occurring as zero modes

of our vacuum.
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Finally, consider the 1 representation of the Spin(10) gauge group. It follows from

(2.8), the above discussion, and the fact that the Wilson line action on 1 is trivial that

the number of 1 zero modes is given by the Z3 × Z3 invariant subspace of H1
(
X̃, Ṽ ⊗ Ṽ ∗

)
,

which is denoted by H1
(
X̃, Ṽ ⊗ Ṽ ∗

)Z3×Z3 . Using the formalism developed in [11], we find

that

h1

(
X̃, Ṽ ⊗ Ṽ ∗

)Z3×Z3

= 13. (2.29)

That is, there are 13 vector bundle moduli.

Putting these results together, we conclude that the zero mode spectrum of the observ-

able sector has gauge group SU(3)C ×SU(2)L ×U(1)Y ×U(1)B−L, contains three families

of quarks and leptons each with a right-handed neutrino, has one Higgs–Higgs conjugate

pair, and contains no exotic fields or additional vector-like pairs of multiplets of any kind.

Additionally, there are 13 vector bundle moduli.

As a final step, one must demonstrate that Ṽ is slope-stable. This has been proven,

in detail, and is presented in [13]. Here, suffice it to say that Ṽ will be stable with respect

to any Kähler class in a finite three-dimensional region of Kähler moduli space containing

the point

ω = 3 (2τ1 + 3τ2 + φ) . (2.30)

Henceforth, we restrict our discussion to this region of moduli space, which we denote

by Ks.

Another important constraint for realistic compactifications is the existence of Yukawa

couplings. Recall that (via the Kaluza-Klein reduction) the massless fields are associated

with a number of vector-bundle valued harmonic one-forms Ψi on the Calabi-Yau threefold.

Their Yukawa coupling is then given by the integral

λijk =
1

9

∫

eX

Ω ∧ Tr
(
Ψi ∧ Ψj ∧ Ψk

)
, (2.31)

where the Tr denotes a suitable contraction of the vector bundle indices. The integral is

only non-zero if the legs of the three one-forms Ψi span the π1-fiber direction, the π2 fiber

direction, and the base P
1 direction. This is the case here. A detailed analysis reveals that

we do, indeed, have non-vanishing Yukawa couplings [22].

Thus far, we have discussed the vector bundle of the observable sector. However,

the vacuum can contain a stable, holomorphic vector bundle, Ṽ ′, on X whose structure

group is in the E′
8 of the hidden sector. As discussed earlier, the requirement of anomaly

cancellation relates the observable and hidden sector bundles, imposing the constraint that

c2

(
Ṽ ′

)
= c2

(
TX̃

)
− c2

(
Ṽ

)
− [W] + [W ], (2.32)

where [W] and [W] must be effective classes and c2 is the second Chern class. In the strongly

coupled heterotic string, [W] and [W ] are the curve classes around which a bulk space five-

brane and anti-five-brane respectively are wrapped. We have previously constructed X̃

and Ṽ and, hence, can compute c2

(
TX̃

)
and c2

(
Ṽ

)
. They are found to be

c2

(
TX̃

)
= 12

(
τ2
1 + τ2

2

)
, c2

(
Ṽ

)
= τ2

1 + 4τ2
2 + 4τ1τ2. (2.33)

– 8 –
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Inserting these results, eq. (2.32) becomes a constraint on Ṽ ′, [W], and [W ]. To obtain a

consistent theory the hidden sector bundle Ṽ ′ must satisfy (2.32). The easiest possibility

mathematically, and also the most relevant physically, is to choose Ṽ ′ to be the trivial

bundle, that is,

Ṽ ′ = O eX
. (2.34)

In this case the anomaly cancellation condition becomes

[W] − [W] =
(
3τ2

1

)
+ 4

(
τ2
1 + τ2

2

)
− 4

(
τ1τ2 − τ2

1 − τ2
2

)
. (2.35)

The curves in brackets are Poincaré dual to effective curves on X̃ . Since they appear

with positive and negative coefficients, the overall curve is not effective and we require a

non-vanishing anti-five-brane class. It is simplest to set

[W]
(
3τ2

1

)
+ 4

(
τ2
1 + τ2

2

)
, [W ] = 4

(
τ1τ2 − τ2

1 − τ2
2

)
. (2.36)

Hence, in addition to the hidden sector unbroken E8 gauge group there is both a five-brane

and an anti-five-brane in the bulk. Furthermore, as discussed in [14], one can stabilize all

moduli in this context with a small, positive cosmological constant. Therefore, one obtains

a meta-stable non-supersymmetric string theory vacuum.

As mentioned earlier, it is of mathematical interest to see whether the anomaly can-

cellation condition, eq. (2.32), can be solved using an SU(n) hidden sector gauge instanton

and no anti-five-branes in the bulk space. For this one has to find a different slope-stable

hidden sector bundle Ṽ ′, which is not necessarily non-trivial. As a guide to constructing

stable, holomorphic vector bundles Ṽ ′ in the hidden sector, we note the following condition.

It can be shown that if Ṽ ′ is slope-stable with respect to a Kähler class ω, it must satisfy

the “Bogomolov inequality” ∫

eX

ω ∧ c2

(
Ṽ ′

)
> 0. (2.37)

Note that if c2

(
Ṽ ′

)
is Poincare dual to an effective (anti-effective) curve, then (2.37) is

satisfied (never satisfied) for any choice of Kähler class. Most vector bundles Ṽ ′ have a

second Chern class whose Poincare dual is neither effective nor anti-effective. In this case,

constraint (2.37) is satisfied for ω’s contained in a non-vanishing subspace of the Kähler

cone. One can explicitly analyze this subspace using the second Chern class derived from

anomaly condition (2.32). It is simplest to limit our discussion to Ṽ ′ for which [W] = 0.

The generalization to the case where [W] is non-vanishing is straightforward. In this case,

eqns. (2.32) and (2.33) imply that

c2

(
Ṽ ′

)
= 11τ2

1 + 8τ2
2 − 4τ1τ2. (2.38)

Recalling from (2.15) that τ1,τ2 and φ are a basis for the Z3 × Z3 invariant Kähler moduli

space, we can parameterize an arbitrary such Kähler class by

ω = x1τ1 + x2τ2 + yφ. (2.39)

– 9 –
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Then, using the relations τ3
1 = τ3

2 = φ2 = 0, τ1φ = 3τ2
1 and τ2φ = 3τ2

2 we see using (2.38)

and (2.39) that

ω ∧ c2

(
Ṽ ′

)
= 4x1 + 7x2 − 12y. (2.40)

It follows that constraint (2.37) will be satisfied if

4x1 + 7x2 − 12y > 0. (2.41)

This defines a three-dimensional region of moduli space which we denote by KB . Note that

the Kähler class (2.30) for which the observable sector bundle Ṽ was proven to be stable

also satisfies (2.41). Hence,

Ks ∩ KB 6= ∅. (2.42)

In fact, one can show that Ks ∩ KB is a finite three-dimensional subcone of the Kähler

cone. It follows that both Ṽ and Ṽ ′ can, in principle, be slope-stable with respect to any

Kähler class ω ∈ Ks ∩ KB .

Fix ω ∈ Ks∩KB . There are numerous vector bundles Ṽ ′ with second Chern class (2.38)

which satisfy condition (2.37) for this choice of ω. Since (2.37) is only a necessary condition

for stability, we expect that many such Ṽ ′ are not stable. Indeed, one can construct explicit

examples for which this is the case. However, (2.37) is a very strong condition and it is

believed that at least some Ṽ ′ are slope-stable with respect to ω. Furthermore, since one

may choose any ω in the three-dimensional space Ks ∩KB , it becomes even more probable

that there exist slope-stable vector bundles Ṽ ′ with respect to at least one such ω.

We conclude that one expects that there should exist non-trivial hidden sector holo-

morphic vector bundles Ṽ ′ that satisfy the anomaly cancellation condition with [W] = 0

and are slope-stable. However, we re-iterate that in such vacua one expects unbroken

supersymmetry and a large negative cosmological constant after stabilizing the moduli.

Explicit examples of such bundles will be presented elsewhere.
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R. Blumenhagen, B. Körs, D. Lüst and T. Ott, The standard model from stable intersecting

brane world orbifolds, Nucl. Phys. B 616 (2001) 3 [hep-th/0107138];
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